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ABOUT THIS DOCUMENT
This document provides a comprehensive explanation of industry-standard capacity concepts and the capacity reporting 
mechanisms provided by the NVMe specification. While applicable to any operating system, the examples included in 
this document are based on Linux using the industry standard NVMe management CLI (nvme-cli), available on GitHub at 
https://github.com/linux-nvme/nvme-cli and the `blockdev` command line tool (https://man7.org/linux/man-pages/man8/
blockdev.8.html).
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1. PHYSICAL AND USER CAPACITIES
A typical NAND Flash-based NVMe SSD comprises an NVMe IO controller, and the collection of NAND die connected to it. 
Each die contributes a share of the total storage capacity available to the IO controller. It is the fundamental responsibility of 
the IO controller to make this collection of independent die appear as a monolithic pool of data storage to the host.

Figure 1: Basic Composition of an NVMe SSD

The quantity of NAND die (and the way they are connected to the controller) significantly impacts the SSD’s performance 
characteristics. In general, higher die counts lead to better performance characteristics. However, as NAND die density 
continues to increase, the quantity of die needed to provide the same amount of data storage decreases. Consequently, the 
performance characteristics of a NAND Flash-based NVMe SSD at any fixed capacity point tend to decline over time. That is, 
capacity and performance are intertwined.

The total capacity of all NAND die comprising 
the SSD is called physical capacity. The physical 
capacity of an SSD is not reported to the host by 
any standard NVMe mechanisms. The SSD vendor 
decides how much physical capacity it makes 
available to the host, which becomes the user or 
usable capacity. The rest is held back as “over-
provisioned” capacity. Over-provisioned capacity is 
the difference between the physical capacity and 
the user capacity. The quantity of over-provisioned 
capacity directly determines garbage collection’s 
maximum intensity and, thus, the SSD’s endurance 
and sustained write performance. A vendor may 
choose to increase the physical capacity or reduce 
the user capacity to improve the endurance and 
sustained write characteristics of an SSD. This is 
the difference between so-called “read intensive” 
and “write intensive” SSDs.

Figure 2: Physical and User Capacities

1.1. ADVERTISED CAPACITY AND BYTE PREFIX ISSUES
The advertised capacity of an SSD is the total capacity claimed by the SSD vendor and is an expression of the user 
capacity. The advertised capacity value is found on the SSD label. This value is always a base 10 (power of ten) in 
the storage industry, meaning that a kilobyte is 1000 bytes (103), a megabyte is 1,000,000 (106) bytes and is often 
confused with base 2 (power of two) values where a kilobyte is 1024 bytes (210), a megabyte is 1,048,576 (220), etc. 
Many software tools report in base 2 units such that the total capacity of an SSD reported by software is often lower 
than the advertised capacity (or what’s printed on the label). In other words, whether a kilobyte means 1000 or 1024 
bytes is often ambiguous.
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The International Electrotechnical Commission (IEC), in collaboration with the Institute of Electrical and Electronic Engineers 
(IEEE) and the International Organization for Standardization (ISO), introduced new units to disambiguate base 10 and base 2 
units. Under IEC standards, a kilobyte (KB) is 1000 bytes, and a kibibyte (KiB) is 1024 bytes. IEC units have become common, 
but adoption is far from universal, and the possibility of misinterpreting the meaning of a kilobyte remains.

SI Unit SI Bytes IEC Unit IEC Bytes SI-to-IEC Delta

Kilobyte 103 Kibibyte 210 2.4%

Megabyte 106 Mebibyte 220 4.9%

Gigabyte 109 Gibibyte 230 7.4%

Terabyte 1012 Tebibyte 240 10.0%

Petabyte 1015 Pebibyte 250 12.6%

Exabyte 1018 Exbibyte 260 15.3%

Table 1 – SI vs. IEC Unit Prefixes and Values

1.2. USER-CAPACITY REPORTING IN NVME
In an NVMe SSD, the total user capacity of the SSD is expressed in bytes. This avoids the ambiguity of the unit base or the 
details of the internal SSD geometry. This value can be found in the Identify Controller Data Structure under the TNVMCAP 
(Total NVM Capacity) field.

# Query total capacity on a 3.84TB SSD
$ nvme id-ctrl /dev/nvme0 | grep nvmcap 
tnvmcap: 3840755982336 # Total usable bytes 
unvmcap : 0

The UNVMCAP (Unallocated NVM Capacity) indicates how many bytes of capacity is currently not reachable by the host. 
While the TNVMCAP value is fixed, the UNVMCAP can range from 0 to TNVMCAP. Typically, UNVMCAP is zero to maximize 
the capacity of the SSD.

2. BLOCKS AND SECTORS
Although the user capacity of an NVMe SSD is reported in bytes, NVMe SSDs provide block storage. Block storage devices 
do not provide an address for each byte of capacity but rather group bytes into larger units called sectors that are addressed 
using a logical block address (LBA). A sector is the minimum unit of access to the disk, and each sector has a corresponding 
LBA. The SSD guarantees that for a given LBA, it will always return the data last written to that address; however, the 
underlying physical location of the data can change due to rewrites or garbage collection.

2.1. LOGICAL VS. PHYSICAL SECTORS
The logical sector size is the host’s minimum access granularity. It may differ from the SSD’s internal physical sector size, 
as the physical sector size is the IO controller’s minimum access granularity to the NAND media. The logical sector size 
can be smaller or equal to the physical-sector size. There is no advantage to using a logical-sector size larger than the 
physical-sector size; thus, the product does not support these configurations.
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Figure 3: Logical to Physical-Sector Relationships

2.2. QUERYING LOGICAL AND PHYSICAL SECTOR SIZES
It is mandatory for NVMe devices to report the logical-sector size but optional to report details about the internal-sector size 
configuration. The blockdev command can be used to inspect the logical and physical-sector sizes of a block device.

# Query the logical sector size in bytes
$ sudo blockdev --getss /dev/nvme0n1 512

# Query the physical sector size in bytes
$ sudo blockdev --getpbsz /dev/nvme0n1 
4096

For the device in the case above, the logical-sector size is 512 bytes, and the physical sector size is 4 KiB. We can use the 
Identify Namespace data structure to obtain these sizes from the NVMe device. As an NVMe device may support more than 
one logical-sector size, a list of supported LBA formats (LBAF) is provided along with a field – Formatted LBA Size (FLBAS) - 
that indicates the index of the format in use.

# Query the FLBAS index
$ sudo nvme id-ns /dev/nvme0n1 | grep flbas 
flbas : 0

# Show the list of supported LBAFs
$ sudo nvme id-ns /dev/nvme0n1 | grep lbaf
nlbaf : 1 # Zeroes-based value, meaning 2 are supported 
lbaf 0 : ms:0 lbads:9 rp:0 (in use)
lbaf 1 : ms:0  lbads:12 rp:0

The LBA data size (LBADS) is reported as ‘9’ (index 0) in the above case. This is an exponent value with base 2 (i.e., 9 means 
29 or 512-bytes).
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Determining the physical-sector size is more complex and can be inferred from several different values in the Identify 
namespace data structure. The most straightforward method is to query the preferred IO (NPWA) alignment.

# Query the NPWA
$ sudo nvme id-ns /dev/nvme0n1 | grep npwa 
npwa: 7 # Zeroes-based value

In the above, a value of ‘7’ is a zeroes-based value counted in units of the logical-sector size (i.e., 8 * 512 = 4 KiB). Note: the 
Linux NVMe driver derives the physical-sector size value from other Identify Namespace Data Structure fields.

2.3. BLOCK SIZES AND ACCESS ALIGNMENT
An IO command contains a single LBA and a count of contiguous logical sectors in the LBA space. For example, if the host 
wants to write 8 LBA’s worth of data starting at LBA 0, then the LBA in the IO command will be set to 0 with the length set to 
8, and LBAs 0 through 7 will be written to the disk. The number of logical sectors in an IO command is called the block size. 
The block size is always a multiple of the logical sector size.

When the logical sector size is smaller than the physical sector size, there is always the potential for misalignment. 
Misalignment occurs when a host block requests only a portion of a physical sector. In the case of a read, this results in 
wasted read data and, thus, degraded performance. In the case of a write, the entire contents of a physical sector must be 
rewritten (even though...only a portion of the data is changed) which forces read-modify-write behavior. An entire physical 
sector must be read, a portion of the sector data is then updated, and finally, the entire physical sector is written to disk. This 
not only impacts performance but also increases write amplification.

 

Figure 4: Access Alignment

With some care, the host can avoid misaligned writes. When the physical sector size matches the logical-sector size, there is 
no chance for misalignment.
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2.4. COMMON SECTOR SIZES
Historically, SSDs contained 512 bytes per sector. As the drives grew larger, it became commonplace to see 4096-byte (4KiB) 
sectors, sometimes referred to as “advanced format” HDDs. From the outset, the internal-sector size of SSDs has most 
commonly been 4KiB. It’s a common misconception that this results from the NAND page size or some other attribute of 
NAND Flash. Indeed, early NAND Flash SSDs commonly used NAND devices with a 4KiB page size; however, this was a mere 
coincidence, and the typical page size of NAND has increased over time. 4KiB sectors are commonly used in SSDs to reduce 
the size of the logical to physical (L2P) map. The logical-to-physical map translates an LBA to a physical location with the 
NAND Flash. Using a 4KiB sector-size yields an eight-fold decrease in map size compared to 512-byte sectors. If the map is 
stored in DRAM, this represents considerable cost savings. As SSD capacities continue to grow, sector sizes larger than 4KiB 
will become more commonplace to keep the size of the logical to physical map manageable.

Some SSDs support additional “protection information” for a logical sector-level checksum. For example, a 512-byte sector 
can be augmented with 8 additional checksum bytes. Thus, the sector size becomes 520 bytes, sometimes expressed as 
512+8, to distinguish the separation of data bytes from protection information. Similarly, a 4 KiB logical sector may have 8 or 
even 64 bytes of additional bytes for protection information resulting in 4104-byte and 4160-byte sector sizes (or 4096+8 
and 4096+64, respectively).

3. INDUSTRY STANDARDS FOR CAPACITY VALUES
The storage industry has established standards to ensure that the number of logical sectors available to the host for a given 
advertised capacity is the same across all vendors. For example, a 7.68 TB SSD from Vender A provides the same number of 
logical sectors as a 7.68 TB SSD from Vendor B.

The International Disk Drive and Equipment Materials Association (IDMEA) provides the most widely followed standard for drive 
capacity reporting in the LBA1-03 specification. The SFF-8447 specification is a newer standard advanced by the Storage and 
Networking Industry Association (SNIA) that extends the LBA1-03 specification. Both standards are publicly available:

	● LBA1-03: http://www.idema.org/wp-content/downloads/2169.pdf
	● SFF-8447:   https://www.snia.org/node/4706

The specifications provide formulas that take the advertised capacity and logical sector size as inputs and output the 
appropriate sector count. The following table summarizes the exact byte counts (reflected in TNVMCAP) demanded by each 
standard for commonly advertised capacities.

Advertised Capacity in TB LBA1-03 TNVMCAP SFF-8447 TNVMCAP

1.60 1600321314816

1.92 1920383410176

2.00 2000398934016

3.20 3200631791616

3.84 3840755982336

4.00 4000787030016

6.40 6401252745216

7.68 7681501126656

8.00 8001563222016

12.80 12802494652416 12800076283904

15.36 15362991415296 15360950534144

16.00 16003115606016 16000900661248

http://www.idema.org/wp-content/downloads/2169.pdf
https://www.snia.org/node/4706
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Advertised Capacity in TB LBA1-03 TNVMCAP SFF-8447 TNVMCAP

25.60 25604978466816 25600152567808

30.72 30725971992576 30720827326464

32.00 32006220374016 32000727580672

51.20 51209946095616 51200305135616

61.44 61451933147136 61440580911104

64.00 64012429910016 64000381419520

Table 2 – Industry Standard TNVMCAP Values

Consistently, both standards provide slightly more capacity than a pure base-10 conversion of the advertised capacity.

4. NVME NAMESPACES
In the simplest case, the total user capacity is addressed using a single, continuous LBA range. That is, all the user capacity 
is available in a single namespace. This is the default shipping configuration for virtually all NVMe SSDs. NVMe optionally 
allows an SSD to contain more than one namespace. For example, the user capacity can be divided into two-equal size 
namespacies, each addressing half of the total user capacity. In this case, both namespaces have independent LBA ranges 
starting from 0. Operating systems treat each namespace as a block device (or logical drive). Therefore, it is possible to use 
the namespaces in independent fashion (like drive partitions).

Figure 5: A Multi-Namespace Configuration

With the potential existence of more than one namespace, all NVMe IO commands specify the LBA and sector count and the 
namespace identifier (NSID).
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4.1. NAMESPACE MANAGEMENT
The optional NVMe namespace-management feature set is used to modify the namespace configuration of the SSD. 
Only the single-default namespace is supported if an SSD does not support Namespace Management. With Namespace 
Management, an existing namespace can be “detached” from the controller (removed from host access), deleted, or re-
attached. If a namespace is deleted, its previously allocated capacity will be reflected in the UNVMCAP field of the Identify 
Controller data structure. This indicates that capacity is available to create a new namespace (or it can be left aside as 
additional over-provisioned capacity).

Namespace creation involves specifying several critical parameters of the namespace:

1.	 The logical sector size of the namespace (FLBAS) is not arbitrary and is selected from a list of supported options provided 
by the IO controller. All namespaces may require the same logical sector size configuration depending on the IO controller.

2.	 The Namespace Size (NSZE) is the number of LBAs available to the host.
3.	 The Namespace Capacity (NCAP) is the actual capacity provided to support the Namespace Size. The namespace is 

considered thin provisioned when the Namespace Capacity is less than the Namespace Size. Thin provisioning is also an 
optional NVMe feature.

Figure 6: Thin Provisioned and Non-Thin Provisioned Namespaces

When the NCAP is less than the NSZE, an additional parameter called Namespace Usage (NUSE) is used to reflect the 
current capacity utilization of the namespace. Monitoring the Namespace Usage (NUSE), a parameter is required to ensure 
that the Namespace Capacity (NCAP) is not exceeded.
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4.2. QUERYING NAMESPACE CAPACITY PARAMETERS
The three namespace capacity parameters – NSZE, NCAP, and NUSE – are reported in the Identify Namespace Data Structure.

 # Query the NSZE
$ sudo nvme id-ns /dev/nvme0n1 | grep nsze 
ncap	 : 0x1bf1f72b0 # count is in logical sectors

# Query the NCAP
$ sudo nvme id-ns /dev/nvme0n1 | grep ncap 
ncap	 : 0x1bf1f72b0 # count is in logical sectors

# Query the NUSE
$ sudo nvme id-ns /dev/nvme0n1 | grep nuse 
nuse	 : 0 # count is in logical sectors

4.3. QUERYING FOR NAMESPACE-MANAGEMENT AND THIN-PROVISIONING SUPPORT
Support for namespace management is indicated in the Identify-Controller data structure in the Optional Admin Command 
Support (OACS) field.

# Query for Namespace Management Support
$ sudo nvme id-ctrl /dev/nvme0 -H | grep “NS Management” 
[3:3]: 0x1 NS Management and Attachment Supported

The Identify-Namespace data structure in the Namespace Feature (NSFEAT) field indicates support for thin provisioning. 
Since namespace management is supported, a namespace identifier of all ones will indicate the capabilities shared 
between all namespaces.

# Query for Thin Provisioning Support
$ sudo nvme id-ns /dev/nvme0 -n 0xffffffff -H | grep Thin 
[0:0] : 0x1 Thin Provisioning Supported

The specific field name is referred to as THINP in the NVMe specification. Lastly, the upper limit on the number of namespaces 
supported by the IO Controller is indicated in the identify-controller data structure’s Number of Namespaces (NN) field.

# Query the Maximum Number of Namespaces
$ sudo nvme id-ctrl /dev/nvme0 | grep nn 
nn	 8

In the above case, 8 namespaces can be supported concurrently.

4.4. ATTACHING AND DETACHING NVME NAMESPACES
Because a single namespace, including the total-user capacity, is the default shipping configuration for all SSDs, there is 
typically no space left (as indicated in UNVMCAP) to create more namespaces without deleting the default namespace. 
Deleting and creating namespaces are both two-step processes in NVMe. Deleting a namespace must first be “detached” 
from the IO controller. It may then be deleted.

Similarly, after a namespace is created, it must be “attached” to the IO controller. This is because a namespace can be 
attached to multiple IO controllers (for multi-pathing). The basic flow of namespace creation is shown in Figure 11.
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Figure 7: Namespace Modification Flow

4.5. RULES FOR NAMESPACE CREATION
When creating a namespace, the logical sector size (through FLBAS), Namespace Size (NSZE), and Namespace Capacity 
(NCAP) are provided by the host. The value for FLBAS must be in the list of supported LBA format (LBAF) options. That is, 
arbitrary sector sizes are not supported. The Namespace Size (NSZE) and Namespace Capacity (NCAP)-parameters should 
be allocated according to the preferred allocation granularity of the IO controller. These can be found in the Namespace 
Granularity List-data structure.

# Query the preferred namespace granularity
$ sudo nvme id-ns-granularity /dev/nvme0n1
Identify Namespace Granularity List:
ATTR: Namespace Granularity Attributes: 0x0
NUMD: Number of Descriptors: 0
Entry {0}
NSG: Namespace Size Granularity :0x1000
NCG: Namespace Capacity Granularity :0x1000

The namespace size granularity applies to the NSZE parameter, while the namespace capacity granularity value applies to 
the NCAP parameter. In the above case, both are 4 KiB. Intuitively, and it makes sense that the granularity of a namespace 
should be a multiple of the physical sector size.

Namespace IDs are assigned at the time of namespace creation. It is a best practice to avoid creating “holes” in 
namespace IDs. For example, if there are three namespaces with namespace IDs 1, 2, and 3. Deleting namespace 2 
without deleting 3, creating a new namespace may result in a mismatch between the namespace ID and the number 
assigned in the device filename (e.g., /dev/nvme0n(n)). Removing all namespaces, then re-creating namespaces in the 
desired sequence is preferred.
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4.6. NAMESPACE CONFIGURATION EXAMPLE
In the following example, an SSD with a single namespace is reconfigured with two namespaces with equal-capacity 
parameters.

# Query the controller-capacity values
$ sudo nvme id-ctrl /dev/nvme0 | grep nvmcap 
tnvmcap : 3840755982336
unvmcap  : 0

# Query the number of existing namespaces
$ sudo nvme list-ns /dev/nvme0 
[ 0]:0x1

There is one namespace and no UNVMCAP, indicating that the single namespace is using the total capacity of the SSD.

# Query the namespace-capacity values

# LBA format
sudo nvme id-ns /dev/nvme0n1 | grep lbaf 
nlbaf : 1
lbaf 0 : ms:0 lbads:9 rp:0 (in use) 
lbaf 1 : ms:0 lbads:12 rp:0

# Namespace Size
$ sudo nvme id-ns /dev/nvme0n1 | grep nsze 
nsze	 : 0x1bf1f72b0

# Namespace Capacity
$ sudo nvme id-ns /dev/nvme0n1 | grep ncap 
ncap	 : 0x1bf1f72b0

# Namespace Use
$ sudo nvme id-ns /dev/nvme0n1 | grep nuse 
nuse	 : 0

The single namespace uses 512-byte sectors with NSZE set equal to NCAP.

Next, the namespace is detached and deleted (note that this is destructive to data):

# Detach the namespace
$ sudo nvme detach-ns /dev/nvme0 -n 1
warning: empty controller-id list will result in no actual change in the namespace attachment detach-ns: Success, nsid:1

# Delete the namespace
$ sudo nvme delete-ns /dev/nvme0 -n 1 
delete-ns: Success, deleted nsid:1
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All the capacity in the SSD will now reflect as unallocated:

# Query the controller-capacity values
$ sudo nvme id-ctrl /dev/nvme0 | grep nvmcap 
tnvmcap : 3840755982336
unvmcap  : 3840755982336

When creating new namespaces, the preferred granularity values of the controller should be respected.

# Query the preferred namespace granularity
$ sudo nvme id-ns-granularity /dev/nvme0n1
Identify Namespace Granularity List:
ATTR: Namespace Granularity Attributes: 0x0
NUMD: Number of Descriptors: 0
Entry {0}
NSG: Namespace Size Granularity :0x1000
NCG: Namespace Capacity Granularity :0x1000

Dividing the TNVMCAP in half yields 1,920,377,991,168 bytes; this value must have a granularity equal to 4 KiB per the preferred 
granularity of the controller. Since 1,920,377,991,168 / 4096 = 468,842,283 with no remainder, the granularity requirement is met.

# Create namespace 1
$ sudo nvme create-ns /dev/nvme0 --flbas=0 --nsze=3750738264 --ncap=3750738264 create-ns: Success, created nsid:1

# Create namespace 2
$ sudo nvme create-ns /dev/nvme0 --flbas=0 --nsze=3750738264 --ncap=3750738264 create-ns: Success, created nsid:2

The namespaces must be attached and rescanned to become visible to the host.

# Attach namespace 1
$ sudo nvme attach-ns /dev/nvme0 -n 1
warning: empty controller-id list will result in no actual change in the namespace attachment attach-ns: Success, nsid:1

# Attach namespace 2
$ sudo nvme attach-ns /dev/nvme0 -n 2
warning: empty controller-id list will result in no actual change in the namespace attachment attach-ns: Success, nsid:2create-
ns: Success, created nsid:2

# Rescan the namespaces
sudo nvme ns-rescan /dev/nvme0

Now, two equal size logical drives are ready for use.

# List block devices
$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
nvme3n1 259:6 0 1.7T 0 disk
nvme3n2 259:10 0 1.7T 0 disk
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5. THIN PROVISIONING
The Namespace Size (NSZE) parameter determines the size of the namespace that is addressable by the host. At the same 
time, the Namespace Capacity (NCAP) describes the maximum quantity of data that can be stored in the namespace at any 
given time. If these are set to be equal, then there is no chance for the host to “overfill” the allocated capacity; however, this can 
result in stranded capacity. Stranded capacity can occur under two general scenarios. First, the expected disk utilization is low 
when multiple namespaces are created (and consequently multiple logical disks). In this case, fully provisioning each namespace 
will allocate capacity the host will never use. Second, the IO controller reduces data through compression or deduplication, 
reducing capacity usage. In this case, the host could potentially store more data than the NCAP indicates.

 

Figure 8: Stranded Capacity Outlined in Red

In either case, the stranded capacity problem is resolved by increasing the addressable size of the namespace without 
allocating all the underlying capacity needed to store a fully-populated namespace.

Figure 9: Using Thin Provisioning to Avoid Stranded Capacity
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5.1. MONITORING NAMESPACE USAGE
When a namespace is thin provisioned, capacity can be used more efficiently; however, because the capacity visible to 
the host is larger than the underlying capacity, there exists the possibility of over flowing the namespace. The NVMe 
specification provides the Namespace Usage (NUSE) parameter in the Identify Namespace Data Structure to measure the 
actual Namespace Capacity utilization at any given time. Without thin provisioning, the host must monitor only the logical 
utilization of disks (e.g., file system utilization). With thin provisioning, hosts must also monitor the physical utilization 
through the Namespace Usage parameter.

5.2. DEALLOCATION AND TRIM
The Namespace Utilization increases when a logical sector is written (or allocated). Sectors can only be deallocated when 
trimmed (via the Dataset Management command) or optionally through a Write Zeroes command. An NVM Format operation 
with secure erase will deallocate all sectors in a namespace. Using thin provisioning requires a deallocation (or trim) strategy. 
This is commonly achieved at the filesystem level by mounting with the discard option enabled (enabling trim); however, for 
applications that use raw device access, the application must directly support trim operations.

6. NAMESPACE CREATION WITH EXTENDED CAPACITY
When the sum of the Namespace Sizes (NSZE) for all namespaces created does not exceed the TNVMCAP value, the values 
for the Namespace Size (NSZE) and Namespace Capacity (NCAP) are subject only to the minimum granularity requirements. 
When the sum of all Namespace Sizes (NSZE) exceeds the TNVMCAP value, the SSD operates in extended capacity mode, 
and the sum of Namespace Sizes (NSZE) across all namespaces must calculate to an integer gigabyte value following the 
IDEMA LBA1-03 specification.

The relationship between capacity and sector counts defined by IDEMA LBA1-03 are as follows: 

For 512-byte logical sectors:
NSZE = (97,696,368) + (1,953,504 * (Desired Capacity in GB - 50))

For 4096-byte logical sectors:
NSZE = (12,212,046) + (244,188 * (Desired Capacity in GB - 50))

This rule applies only to the Namespace Size (NSZE). The Namespace Capacity (NCAP) values remain subject only to the 
granularity requirements.

When only a single-extended-capacity namespace is desired, a valid NSZE value can be obtained simply by calculating the 
appropriate value based on the sector size. With multiple namespaces in extended capacity, care must be taken to ensure 
that any namespace created that puts the device into extended capacity mode satisfies the added IDEMA LBA1-03 condition 
based on the sum of all Namespace Sizes (NSZE). The nature of the IDEMA LBA1-03 formulas complicates this. The sum of 
two or more valid NSZE values derived from the desired capacity in GB will not then sum to a total NSZE that calculates to a 
valid capacity value (i.e., an integer number of gigabytes).

6.1.OVER-FILL WITH EXTENDED CAPACITY
As the Namespace Usage (NUSE) exceeds the Namespace Capacity (NCAP), the SSD will begin to apply a progressively 
stronger write throttle. This “soft-landing” ensures that any necessary writes to recover from the over-fill condition can 
still be performed. For example, re-mounting a filesystem on an over-filled namespace. Nonetheless, proper capacity 
management techniques are strongly recommended to avoid over-fill conditions before they occur. This fundamentally 
begins with monitoring the Namespace Usage (NUSE) field. The specific framework is infrastructure dependent.

7. SUMMARY OF NVME CAPACITY CONCEPTS
The advertised capacity is the total capacity reported by an SSD vendor. The relationship of the advertised capacity to 
the number of available bytes on the SSD is governed by industry standards such that any SSD with the same advertised 
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capacity will provide the same number of bytes for host storage. The advertised-usable capacity is reported as a base 10 
value. Still, many software programs report capacity in base 2 values, which is potentially confusing. The base must be 
considered whenever a capacity value is reported using prefixes (e.g., KB or MB). IEC units (e.g., KIB vs. KB or MIB vs. MB) are 
one way to avoid confusion but are not universally adopted.

Figure 10: Advertised Capacity on the SSD Label

The physical capacity of a NAND-based NVMe SSD is the total quantity of NAND capacity available to the IO controller of the 
SSD. There is no standard way of querying this value in the NVMe specification. Two SSDs with the same advertised capacity 
may contain different amounts of physical capacity. The physical capacity is generally reported using base 2 prefixes if a 
vendor discloses.
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Figure 11: Physical Capacity

The user capacity is the total capacity the SSD reports to the host. In NVMe, this is the TNVMCAP value in the Identity 
Controller data structure. This value is reported in bytes. The difference between the physical and user capacity is the 
built-in over-provisioned capacity of the SSD. SSDs with higher built-in over-provisioning will have higher sustained write 
performance and endurance than those with lower over- provisioning.

An NVMe SSD’s capacity is exposed to the host in independent namespaces. A namespace is a linear range of logical block 
addresses (LBAs) that the OS treats as an independent-block device. The namespace format indicates the logical-sector size 
and is found in the Identify Namespace data structure (FLBAS) or reported by blockdev with the getss option. The logical 
sector size is the minimum unit of access to the namespace. Block size refers to the number of logical sectors accessed 
by the host in an IO command. If an SSD supports multiple logical sector sizes, a namespace can be reformatted to use a 
different logical-sector size with the NVM Format command.

The internal physical-sector size may be larger than the logical-sector size. When this is the case, best performance and 
endurance require that the host-block size is aligned to units of the internal-physical-sector size. The physical-sector size 
can be inferred from the Identify Namespace data structure values but is most easily obtained through blockdev with the 
--getpbsz option. The NVMe driver interprets the namespace parameters to populate the appropriate physical-sector-size 
value in this case.

If an SSD does not support the namespace management feature set, all the user capacity will be encapsulated in a single 
namespace. If the Namespace Management feature is supported, multiple namespaces can be created. The Identify 
Controller data structure (NN field) reports the total number of simultaneous namespaces supported. When namespaces are 
deleted, the freed capacity is reported in the UNVMCAP field of the Identify Controller data structure. The UNVMCAP field 
determines how much capacity is available to create new namespaces.

The three critical parameters specified when creating a namespace are the logical sector size (through LBAF -- the LBA 
format selection), the Namespace Size (NSZE), and Namespace Capacity (NCAP). The namespace size (NSZE) sets the 
number of LBAs exposed to the host. The namespace capacity (NCAP) determines how much storage is allocated to the 
namespace. To set NSZE greater than NCAP, the SSD must support thin provisioned namespaces. If the SSD does not 
support thin provisioning, then NSZE must equal NCAP.

Thin provisioning can improve storage efficiency by eliminating stranded capacity. If thin provisioning is deployed, the 
host must do the following:

1.	 Monitor the Namespace Usage (NUSE) parameter for all thin provisioned namespaces to ensure it does not exceed 
the Namespace Capacity (NCAP).

2.	 Employ a trim (deallocation) strategy to ensure that LBAs that are no longer needed can be freed by the SSD and 
lower the Namespace Usage (NUSE).
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